Uncovering the (lack of) social science behind mathematical models of behaviour change for HIV prevention

Wim Delva MD, PhD
SACEMA, Stellenbosch University
ICRH, Ghent University
Mathematical models in HIV epidemiology

Compartmental models

\[
\begin{align*}
B &= \text{Birth rate} \\
C &= \text{Sexual contact rate} \\
P &= \text{Probability of HIV transmission per sexual contact} \\
I/(S+I) &= \text{HIV prevalence} = \text{Probability that a random contact is with an HIV positive partner} \\
M &= \text{Mortality rate among HIV positive people}
\end{align*}
\]
Mathematical models in HIV epidemiology

Individual-based models

- Blue circle = HIV negative
- Red circle = HIV positive
- Black circle = Dead
- Black line = Sexual relationship
Health behavioural theories and models in HIV prevention

- HIV mortality rate
- Mass media
- Peer pressure
- Age gap with (prospective) partner
- ART status of (prospective) partner
- Exposure to “some” behavioural change campaign

Society

Network

Couple

Individual
Frailty selection bias, but no behaviour change

\[C' = C \times \exp\left(-a \times \frac{I}{(S+I)}\right) \]

Average sexual contact rate among HIV negative people decreases with increasing HIV prevalence

But no-one changes their behaviour
Frailty selection bias, AND behaviour change

\[C'(t) = \frac{PSI}{S+I} \]
\[C0' = C \exp(-a\frac{I}{S+I}) \]
\[C'(t) = C0' \frac{(1-b)\exp(d(t-f))}{1+\exp(d(t-f))} + b \]

People change behaviour, in response to "some" intervention.
Assortative mixing, by ART status

- Changes in sexual mixing pattern?

![Diagram](attachment:image.png)

- HIV+ on ART
- HIV+ not on ART
- HIV-
How could ART assortativity emerge?

- People on ART prefer partners also on ART
- ART concordant couples are more stable
- People not on ART are more likely to start ART if their partner is on ART
Assortative mixing, by ART status

- **ART Assortativity index (m)**
- **PopIRR_m**
- **ART coverage (a)**
 - 0.3
 - 0.9
- **IRR of ART (r)**
 - 0.04
 - 0.19
 - 0.34
Assortative mixing, by age